Curved Mirror Questions

1. On a separate sheet of paper, solve for the unknown values / properties in the table:

<table>
<thead>
<tr>
<th>Mirror</th>
<th>f (cm)</th>
<th>C (cm)</th>
<th>d_o (cm)</th>
<th>d_i (cm)</th>
<th>M</th>
<th>Real or Virtual</th>
<th>Attitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concave</td>
<td>+10</td>
<td>+20</td>
<td>30</td>
<td>+15</td>
<td>-0.5</td>
<td>Real</td>
<td>Inverted</td>
</tr>
<tr>
<td>Concave</td>
<td>+15</td>
<td>+30</td>
<td>30</td>
<td>+30</td>
<td>-1.0</td>
<td>Real</td>
<td>Inverted</td>
</tr>
<tr>
<td>Convex</td>
<td>-15</td>
<td>-30</td>
<td>30</td>
<td>-10</td>
<td>0.33</td>
<td>Virtual</td>
<td>Upright</td>
</tr>
<tr>
<td>Convex</td>
<td>-13</td>
<td>-26</td>
<td>16</td>
<td>-7.17</td>
<td>0.45</td>
<td>Virtual</td>
<td>Upright</td>
</tr>
<tr>
<td>Concave</td>
<td>+30</td>
<td>+60</td>
<td>30</td>
<td>0</td>
<td>n/a</td>
<td>no image</td>
<td>n/a</td>
</tr>
</tbody>
</table>

For the following problems, use the GRASS method (Given, Required, Analysis, Substitution, and Solution).

2. A thumb of height 8.0 cm is held in front of a concave mirror of focal length 10.0 cm. The image is formed 12.0 cm from the vertex of the mirror. Find:
 a. The position of the object.
 b. The magnification
 c. The size of the image
 d. The type and orientation of the image

 -0.2 x
 -1.6 cm
 Real, inverted, smaller

3. In a physics lab, a candle is placed in front of a converging mirror with a focal length of 15 cm. If the candle sits at the centre of curvature (C) and has a flame 1.5 cm tall, find:
 a. The distance to the object
 b. The image position
 c. The magnification
 d. The image size
 e. The type and orientation of the image

 30 cm
 30 cm
 -1.0 x
 -1.5 cm
 Real, inverted, same size

4. A converging shaving/makeup mirror has a focal length of 17 cm. If the person's face is 12 cm from the vertex of the mirror and is 22 cm long, find:
 a. The image position
 b. The magnification
 c. The image size
 d. The type and orientation of the image

 -40.8 cm (or 40.8 cm behind mirror)
 3.4 x
 74.8 cm
 Virtual, upright, bigger
5. For a concave mirror of focal length 20 cm, where must you place the object so that no image can be seen? Prove with a diagram and using the mirror equation.

6. The Palomar Telescope has a focal length of 18 m. If the diameter of the Sun is 1.39×10^9 m and its distance to the Earth is 1.49×10^{11} m, how large is the image of the Sun? -0.17 m (hi) \text{Hint: Solve for } d_i, \text{ then } M, \text{ then you can solve for } h_i.

7. Looking at the back of a spoon you can see an image of your face. If the focal length of the spoon is 5.5 cm, and your face is 10.0 cm away and 22 cm long:
 a. What type of mirror is the spoon? \textit{convex (back of spoon)}
 b. What sign should the focal length have (positive or negative)?
 c. What is the position of the image? -3.55 cm
 d. What is the magnification of the image? $+0.35 x$
 e. What is the size of the image? 7.8 cm \textit{virtual, upright, smaller}
 f. What is the orientation of the image?

![Diagram of a concave mirror with reflected rays parallel]